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When selection is acting on a large, genetically diverse population, beneficial alleles increase in frequency. This fact can
be used to map quantitative trait loci by sequencing the pooled DNA from the population at consecutive time points, and
observing allele frequency changes. Here we present a population genetic method to analyse time-series data of allele
frequencies from such an experiment. Beginning with a range of proposed evolutionary scenarios, the method measures
the consistency of each with the observed frequency changes. Evolutionary theory is utilized to formulate equations
of motion for the allele frequencies, following which likelihoods for having observed the sequencing data under each
scenario are derived. Comparison of these likelihoods gives an insight into the prevailing dynamics of the system under
study. We illustrate the method by quantifying selective effects from an experiment in which two phenotypically different
yeast strains were first crossed and then propagated under heat stress (Parts et al., Genome Res. 2011). From these
data we discover that about 6% of polymorphic sites evolve non-neutrally under heat stress condition, either because
of their linkage to beneficial (driver) alleles or because they are drivers themselves. We further identify 44 genomic
regions containing one or more candidate driver alleles, quantify their apparent selective advantage, obtain estimates of
recombination rates within the regions, and show that the dynamics of the drivers display a strong signature of selection
going beyond additive models. Our approach is applicable to study adaptation in a range of systems under different

evolutionary pressures.

Introduction

Fitness differences between individuals enable natural
selection to increase the frequency of beneficial variants
within a population over time. The specifics of this pro-
cess, however, are often complex, with the fitness differ-
ence conferred by a variant potentially depending on time,
space, the genetic background of the individual, the geno-
typic composition of the population, and other species in
the vicinity (Hartl and Clark, 2007). Furthermore, other
evolutionary forces such as mutation and genetic drift con-
tribute to allele frequency changes, and their effects can
mask those arising from differences in fitness.

For these reasons, the importance of studying the fit-
ness effects of mutations and evolution in controlled labo-
ratory settings is well known. One of the most celebrated
of these experiments is the “E. coli long-term evolution
experiment” which so far covers over fifty thousand gen-
erations (Woods et al., 2011). Deep sequencing data from
this and other experiments have provided an unprecedented
level of insight into the processes of molecular evolu-
tion (Barrick et al., 2009; Burke et al., 2010; Hietpas et al.,
2011). However, despite this progress in the quantitative
study of evolution, fundamental challenges still remain.

A first challenge in studying fitness effects is the time-
scale it can take for evolution to increase the frequency of
a mutation. Consider for instance a hypothetical variant in
E. coli with a fitness advantage of 6y = fmutant — fwildtype =
1073, Supposing the variant to have survived genetic drift,
and neglecting the effects of other mutations, in a 6popula-
tion of size N = 10% the variant would take ~ 10° gener-
ations to fix, representing hundreds of years of evolution.
While in population genetic terms such a variant would be
considered strongly beneficial (with the ratio of time-scales
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associated with genetic drift and selection, opN > 1), in a
laboratory setting it would be barely detectable within the
lifetime of the researcher. For this reason, knowledge of fit-
ness effects of that size is derived via analysis of intra- and
interspecies variation (Sawyer et al., 2003; Eyre-Walker,
2006; Eyre-Walker and Keightley, 2007; Mustonen and
Lissig, 2007; Sella et al., 2009).

A second challenge is posed by the mutation rate,
which is often small, such that variance within a popula-
tion is created slowly. The low initial frequency of a new
mutant renders even strongly beneficial mutations suscep-
tible to elimination through genetic drift, while, as noted
above, mutants escaping drift take time to grow to de-
tectable frequencies. Waiting for a well-adapted initial pop-
ulation to “find” beneficial mutations, and for these to be-
come visible, may require long-term experiments. Use of
mutagens (Weigand and Sundin, 2009), or increasing the
overall number of individuals in the population can alter
the number of mutations entering the population (Perfeito
et al., 2007).

One means of increasing the rate of adaptation is to
apply artificial selection on a system by imposing environ-
mental stress (Kishimoto et al., 2010; Bell and Gonzalez,
2011) or nutritional restriction (Kao and Sherlock, 2008).
A recently described method, examining heat tolerance in
yeast, combines this approach with the addition of artificial
variance generated by genetic crosses (Parts et al., 2011),
crossing two strains of yeast, and propagating the resulting
population asexually (and sexually) under heat stress con-
ditions. Conceptually, this factorizes the evolutionary dy-
namics: mutations have accumulated over a long time pe-
riod since the last common ancestor of the parental strains,
recombination during the two-way crossing protocol en-
sures that variants not in close proximity are reasonably
unlinked and at substantial frequencies, and strong selec-
tive pressure can be applied. As the population adapts to
the selected condition, multiple changes in allele frequen-
cies can be observed. The process can be traced at a single
nucleotide resolution by deep sequencing the pooled DNA
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from the population at consecutive time points.

This concept, of applying artificial selection to an ar-
tificially mixed population in order to identify quantita-
tive trait loci (QTLs), has previously been applied to the
malaria parasite (Culleton et al., 2005), and to yeast (Segre
et al., 2006; Ehrenreich et al., 2010). As performed in the
instance analysed here (Parts et al., 2011), the method of-
fers the advantages of a high genomic resolution and, ex-
tra to previous studies, time-resolved sequencing data, with
allele frequencies measured at four distinct time-points. In
order to fully exploit the time-series aspect of these new
data, further methodological development is required.

In this paper we develop an approach, based on pop-
ulation genetic theory, to investigate data from such an ex-
periment. Examining changes in the frequencies of segre-
gating alleles over time, we derive measurements of the fit-
ness effects that different alleles confer for heat tolerance,
and identify the presence of non-additive fitness effects. As
the data we analyse is from the asexual version of the ex-
periment the qualitative picture of the dynamics is simple.
During the crossing a large pool of recombinant genotypes
are created. Under selective pressure, the genotypes ac-
quire some unknown haplotype fitness distribution, which
leads to a relative proliferation of the fitter, at the cost of
the less fit, genotypes. However, to obtain a quantitative
picture of the dynamics is challenging: sequencing of the
pool gives only data of allele frequencies, not of genotypes.
As will be shown, success depends on several factors, the
most important being the population size. Another key is-
sue is whether the initial pool contained enough variation
in the high fitness part of the population for no single clone
to dominate the population by the end of the experiment; if
this were the case, changes in allele frequency would not
allow for discrimination between selected and non-selected
alleles in the clone. Here we perform our analysis from the
perspective of alleles but go on to use the allele picture to
seek evidence of more complex selective scenarios such as
those acting on genotypes. While in this case the evolu-
tion is clearly driven by haplotype selection (which we can
however analyse starting from an allelic viewpoint), for a
sexually propagated population an important consideration
is whether an “allele selection” or a “genotype selection”
mode of evolution dominates (Neher and Shraiman, 2009).

In focusing on standing variation generated by the
crossing of strains, important questions concerning de novo
mutation processes are not addressed. Simultaneously, we
recognize that it is not clear how important such ex-
treme selection pressures are for organisms over macro-
evolutionary time-scales. However, experiments such as
this undoubtedly provide an exciting opportunity to study
strong fitness effects, both quantitatively and systemati-
cally, at the molecular level. Here we address this opportu-
nity to quantify the fitness effects acting on the heat toler-
ance trait in yeast within a set of more than thirty thousand
segregating sites.

Overview of the experiment

Two diverged strains of S. cerevisiae, North-American
(NA) and West-African (WA), were crossed for 12 gen-
erations to create a large pool of segregants (Parts et al.,

2011). After the crossing, the pool was put under heat stress
(40°C) for a period of T = 288 hours (/) with replating (af-
ter mixing) of 10% of the pool every 48 hours, DNA from
the remainder of the pool being sequenced at time points
to =0h,t; =96h,tr = 192h,t; = 288h. Estimating the num-
ber of generations (gen) that T corresponds to is difficult,
however it should in any case be less than 10% gen. In or-
der to avoid the need to convert the unit of time from hours
to generations (which would be the more natural choice
in terms of population genetics) we here measure rates in
units of 1/(96k). During the selection protocol the popula-
tion size N varied from ~ 107 after each replating to ~ 108
before replating. In the following we denote the NA allele
with index 0 and WA allele with index 1. Substantial allele
frequency changes were observed over the course of the
experiment (Parts et al., 2011).

Modelling the observed time evolution
Time-scales of the processes

A simple calculation suggests the likely role of ge-
netic drift and de novo mutations in the selection process
to be negligible. We first note that the duration of the exper-
iment, 7', is between five to six orders of magnitude smaller
than the population size, N. As such, genetic drift, which
changes allele frequencies at time-scales of ~ N gener-
ations (Kimura, 1964), most likely has very little effect
across the course of the selection experiment. Consider-
ing next the possibility of de novo mutation, the mutation
rate is known to be small (Drake et al., 1998; Lynch et al.,
2008; Lang and Murray, 2008). Estimating a worst case
scenario by modelling the deterministic growth of a mu-
tant at the outset of the experiment, we note that selection
pressures of ~ 1/Tlog(N/N8) are required to reach fre-
quency 1/N¢ within time T (as can be derived from Eq. 5),
where N¢ is the mean sequencing read depth. This means
that the variant would need to have ~ 0.03 growth rate ad-
vantage per hour to reach detection threshold during the
experiment (for this data N8 ~ 10%). We contend that mu-
tations with so large an effect are likely to be extremely rare
and assume that changes in allele frequencies are driven by
population variation existing in the initial population (we
demonstrate later that de novo mutations do not play a sub-
stantial role directly from the data). Data from a biological
replica of the experiment supported this conclusion (Parts
etal., 2011).

In order to analyse the allele frequency changes ob-
served in the experiment, we considered a variety of sce-
narios described by deterministic evolutionary dynamics in
conjunction with a stochastic sampling process resulting
from finite sequencing depth. For the reasons argued above,
the evolution of the system was taken to be driven by fit-
ness differences between segregating alleles in the initial
population.

Driver and passengers

We consider first a system with a single driver at locus
i with two possible alleles a € {0,1}, influencing all pas-
senger mutations which are in linkage disequilibrium with
it. We recall from deterministic single locus theory that the
driver evolves according to the equation (Hartl and Clark,
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2007):
dg}/dt = oiqlq) (1)

where the frequency of the allele 1 is denoted with g},
(¢? = 1—¢q}) and the selection coefficient o; equals the
Malthusian fitness difference fi1 — fl-0 between the alleles.

The general mathematical framework to compute the
effect of a deterministic driver on linked neutral variation
has been introduced in classical work on genetic hitchhik-
ing (Smith and Haigh, 1974; Barton, 2000). Here we use
the case with zero recombination because during the arti-
ficial selection phase the population evolves asexually and
no further recombination takes place. Therefore, given the
time evolution of the driver we can write down equations
of motion for the passengers:

0=y 4@

ac{0,1}

47 (10)
q{ (t0)

S 2

where q?}’ denotes a two locus haplotype at loci i, j with
alleles a,b € {0, 1}. Equation 2 follows simply by noticing
that the passenger locus has by definition zero selection (its
alleles would stay at their initial frequency without linkage
to the driver), such that the passenger’s initial linkage to
the driver dictates its motion. We note that the two locus
haplotype frequencies at the initial pool can be written in
terms of allele frequencies and linkage disequilibrium:

¢l (10) = ¢f ()} (10) + (~1)**Dy. ()

As such, the dynamics of the passengers given the
driver are fully fixed by D;;. Values of D;; can be inferred
directly for each locus, or parametrized in terms of the re-
combination which took place during the crossing:

Dyj(p,Aij) = Dij(1 — pAj)Nerosine “4)

where D} = min{g’ (O)q} (0),q} (O)q?-(O)} is the maximum
linkage d’isequilibrium attainable, A;; denotes the distance
between the loci in base pairs (bp), p measures the re-
combination rate during the crossing process in units of
1/(bp x gen), and Nerossing denotes the number of crossing
rounds (for pA;; > 1 we set D;; = 0). Equation 4 assumes
an infinite population size but is nevertheless a good de-
scription for the system due to the large number of indi-
viduals in the initial pool. (See Supporting Text for analy-
sis of finite populations by means of computer simulation.
The population size required to correctly decide whether a
marker moved due to linkage to a nearby selective sweep
or just due to drift has been calculated (Logeswaran and
Barton, 2011).)

In a case where full sequences from the initial pool
were available, the initial linkage pattern could be included
directly by measuring the linkage, circumventing Eq. 4,
which from the inference framework most critically relies
on a large population size.

Liberal-driver and passengers

We also consider models in which drivers are allowed
to take any trajectory, that is, in which their dynamics are
not parametrized, and hence constrained, by the equation
of motion given in Eq. 1. For these “liberal-drivers” the

passenger dynamics again follow Eq. 2. We further evalu-
ate time-dependent selection coefficients for such trajecto-
ries; from Eq. 1 we get for each time interval:

PN q' (tes1) q' ()
oilt) = 3 {log Pln) P ) } ®

where Aty =ty 1 —t;. Such dynamics could result from ex-
ternally driven, truly time-dependent selective pressures,
or as yet unidentified internal interactions. Internal inter-
actions could result from linkage to other drivers, epistatic
fitness interactions between the locus and other loci (e.g.
genotype selection), frequency-dependent selection, or a
combination of all of these factors. We return to the in-
terpretation of these drivers later.

The evolutionary equations outlined in this sec-
tion were applied within a standard maximum-likelihood
framework (see Methods) to explore the observed time evo-
lution of the allele frequencies.

Results
Prevalence of non-neutral trajectories

Close to six percent of the segregating sites across the
genome were identified as evolving in a significantly non-
neutral manner. To detect non-neutral behaviour, we calcu-
lated likelihoods for each trajectory under two models, the
first assuming that they evolved neutrally, with any mo-
tion reflecting noise from the finite depth of sampling, and
the second assuming that they evolved independently under
selection as described by Eq. 1. For each locus, this gave
maximum-likelihood predictions for the allele frequencies,
corresponding likelihood scores, and for the second model,
a trajectory-specific selection coefficient. Global statistics
for the likelihood differences between models, and the
identified selection coefficients, are reported in Figure 1.
Applying the Akaike information criterion (AIC) (Akaike,
1974), the fraction of loci identified by this comparison as
being not consistent with neutral evolution (AIC difference
> 10 (Burnham and Anderson, 2002)) was 0.058 (see Sup-
porting Text, Figure S1 for analysis of trajectories from a
control experiment indicating false positive rate less than
1%, Figures S2, S3 and S5 for chromosome specific break-
down). The average selection coefficient was —0.36 (std.
0.63) implying that the North-American allele, rather than
the West-African one, is more often the beneficial allele
under the imposed condition of heat stress. The choice of
which of the two alleles has frequency ¢' is arbitrary and
sets the direction of selection (see Eq. 1).

This simple protocol of assigning a selection coeffi-
cient to each locus provided an instant genome-wide view
of the data set, allowing for the rapid identification of ge-
nomic regions of interest. Using the log-likelihood scores
generated under each model, we identified 44 candidate
driver foci for further examination (see Supporting Text).

Including linkage - driver and passengers

A driver-passenger model (Eqgs. 1-4), which takes the
linkage between nearby loci into account, gave a substan-
tially better representation of the evolution of the system in
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FIG. 1.—Genome wide view under unlinked analysis. a) Or-
dered score differences A.Z (see Methods) between the unlinked additive
drivers and the neutral model. Blue dots show values for all trajectories
while sets of red dots correspond to individual chromosomes (the upper
most is chromosome XV and the second highest II, see Supporting Text
Figures S2 and S3 for individual chromosomes). b) Global histogram of
selection coefficient calling only loci for which AIC > 10. The negative
mean selection ¢ = —0.36 reflects that the North-American allele is more
often better adapted for the heat stress condition than the West-African
one.

all of the 44 candidate driver foci than the unlinked driver
model.

A particularly intuitive example is provided by the
driver in chromosome II reported in Figure 2. While the
additive unlinked drivers model explains the main part of
the sweep region well, it fails to account for the motion
observed around 475kb (Figure 2a). This failure is easy to
understand - the observed allele frequencies move substan-
tially during Aty = #; —to but stay at almost the same value
during Af; and Af, - a motion incompatible with the fam-
ily of curves parameterized by Eq. 1. While an unlinked
driver allele, at frequencies close to 0.5, moves at roughly
constant velocity towards fixation or death, an allele fre-
quency changing through linkage may fix at intermediate
values. Hence, taking model complexity into account, a
model of a single driver and passengers (Figure 2b), ex-
plains the changes in this region of the genome better. Most
frequencies in the region move due to linkage, rather than
through inherent selection.

Distributions of selection coefficients and recombination
rates

We inferred estimates for driver selection coefficients
for each of the candidate driver foci using the driver and
passengers model with linkage parametrized by recom-
bination rate (Figure 3a). Furthermore, inference in each
case gave a maximum likelihood estimate of the local re-
combination rate (Figure 3b). The inferred selection coef-
ficient was negative for 29 of the 44 regions (mean ¢ =
—0.2, std. 0.6), reflecting the advantage conferred by the
North-American allele. A mean magnitude of selection of
|o| = 0.44 indicated that the drivers evolve under substan-
tial selection. The maximum likelihood estimates for re-
combination rates (mean p = 1.6 x 107%(bp x gen) ™!, std.
1.1 x 107%) are consistent with estimates from the litera-
ture (Ruderfer et al., 2006; Mancera et al., 2008).

Liberal-drivers and passengers

In the majority of cases (38/44 regions) the liberal-
driver model gave a significantly improved fit to the ob-
servations after allowing for the additional two degrees of
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FIG. 2.—An example of unlinked additive drivers vs. driver and
passengers models. Allele frequencies in the depicted chromosome II
region moved substantially during the experiment. a) Unlinked additive
drivers model where every trajectory follows Eq. 1: Thick dashed lines
(to-red, t1-green, t>-blue and #3-black) show the data and the correspond-
ing solid lines the maximum likelihood predictions for the motion. The
blue vertical line denotes the location of the largest o (for the full se-
lection profile, see Supporting Text Figure S5). The model explains the
motion close to the sweep focus well, however, it fails qualitatively in
the region ~ 475kb. As explained in the text, the motion in that region is
not compatible with modes provided by Eq. 1. b) Driver and passengers
model as parameterized by Eqs. 1-4. The red vertical line denotes the in-
ferred driver location and as can be seen the region ~ 475kb is much bet-
ter explained than by the unlinked additive drivers model. The difference
between the AIC scores was 466 in favour of the driver and passenger
model, the large difference indicating the importance of including linkage
between nearby loci in the model. Data shown is averaged over a sliding
window of 5, however all inferences are done with the raw data.

freedom (having three o; values compared to one, see Sup-
porting Text Table S1). In the example of chromosome I,
discussed above, a single driver with a constant recombina-
tion rate appeared to explain the observed changes in fre-
quencies very well. Nevertheless, the liberal-driver model
explained the motion much better (gain of 166 units of log-
likelihood, see Supporting Text Figure S4). However, in
chromosome XIII, the second example in which the iden-
tified driver (almost) fixed within the experimental time
frame, a gain of only 3 units of score was achieved, favour-
ing the standard driver and passengers model once degrees
of freedom were taken into account.

Apart from these events, other driver alleles were
found at intermediate frequencies by the end of the ex-
periment. This observation has two possible explanations.
Firstly, all candidate drivers could evolve according to tra-
jectories defined by Eq. 1, but with values of o; too low to
observe fixation during the length of the experiment. Sec-
ondly, candidate drivers could evolve according to some
alternative equations of motion. Application of the liberal-
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F1G. 3.—Statistics of selection and recombination under the
driver and passengers model. a) Histogram of selection coefficients for
the driver foci (mean 6 = —0.2 std. 0.6). b) Histogram of inferred recom-
binations rates for these regions (mean p = 1.6 x 107, std. 1.1 x 107°).

driver model suggested the latter explanation to be correct
for the majority of candidate drivers. While the liberal-
driver model introduces two additional degrees of freedom,
use of this model produced a mean score gain per region of
26 (see Supporting Text Table S1), more than compensat-
ing for the gain in parameters. Figure 4 shows an exam-
ple within chromosome XV where the liberal-driver model
gave a substantial improvement.

Averaged across the duration of the experiment, the
selection coefficients inferred for the liberal-drivers, ex-
pressed as in Eq. 5, were very similar to those shown
in Figure 3 from the driver and passengers model (mean
—0.19 std. 0.68). Estimates of local recombination rates
obtained using liberal-drivers were also very similar (mean
1.5x 1070 std. 1.9 x 1079). To gain an insight to the under-
lying reason for the liberal drivers’ superior log-likelihood
scores, we studied the process at the level of individual
time intervals Ar.

Time-dependent selection coefficients were used to
obtain point estimates of fitness flux, ¢, a measure of the
amount of ongoing adaptation in the system at a given time
point expressed as 6 (1) = Licarvers 01 (11)Ad! (1) /Aty (Mu-
stonen and Lissig, 2007, 2010). The estimates of fitness
flux over the three measured time intervals differ notice-
ably between the two models (Figure 5a). Whereas, under
the standard-driver model, most adaptation takes places in
the first time interval, for liberal-drivers the second time
interval dominates. Most interestingly, under the liberal-
driver model, the fitness flux almost vanishes for the last
time interval, suggesting that by the end of the experiment
the system had almost equilibrated. This point is further
demonstrated by the distribution of the inferred motion of
the drivers under both standard and liberal scenarios during
the last time interval, shown in Figure 5b.

We suggest that the apparent equilibration observed
here should be understood in the sense of separation of
time-scales, in that it represents the completion, within
sequencing resolution, of the first phase of adaptation
(due to the finite sequencing depth we would not observe
movement slower than < (read depth)~! /Ar). Given fur-
ther propagation of the system, deviation from this equilib-
rium would be observed through the arrival of new muta-
tions, however, as discussed later, we do not find evidence
for these at substantial frequencies within the time frame
of the experiment.

0.0

50 100 150 200
locus kb

FIG. 4—An example of standard-driver vs. liberal-driver mod-
els. Allele frequencies in the depicted chromosome XV region moved
substantially during the experiment. Thick dashed lines (#o-red, ¢;-green,
t>-blue and #3-black) show the data and the corresponding solid lines the
maximum likelihood predictions for the motion, vertical lines denote the
inferred driver location. a) Driver and passengers model: The model ex-
plains the motion overall quite well, however, it fails qualitatively near
the sweep focus at 172kb. The motion, which, as is evident by the visible
overlap between the blue and black dashed lines, seems to reach equilib-
rium at an intermediate frequency, is not compatible with models provided
by Eq. 1. b) Liberal-driver and passengers model: The trajectories near the
focus are much better explained than by the standard-driver model. The
liberal-driver interpretation gives a gain of 79 units in log-likelihood at a
cost of two extra degrees of freedom and is thus strongly supported sta-
tistically. Data shown is averaged over a sliding window of 5, however all
inferences are done with the raw data.

The observation of candidate driver alleles reach-
ing equilibrium at intermediate frequencies suggests the
presence of interactions between drivers in different lo-
cations of the genome. An alternative scenario exists, in
which drivers do not interact with one another, but in-
stead evolve with genuinely time-dependent selection co-
efficients. However, while behaviour of this kind might be
observed in response to changes in the external environ-
ment, the consistency of the experimental conditions sug-
gests its occurrence here to be unlikely, interactions be-
tween drivers being the most likely source of the observed
allele frequency changes. Different effects leading to inter-
actions between drivers are discussed later.

New beneficial mutations

We contended earlier, based on a simple calculation,
that de novo mutations are unlikely to play a substantial
role for the allele frequency dynamics during the experi-
ment because they would need to carry fitness advantage
2 3% /h to be detectable during the experiment. However,
in the measured spectrum of fitness effects in Figure 3, we
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FIG. 5.—Adaptation under drivers vs. liberal-drivers interpre-
tation. a) Estimates of fitness flux: in the standard-driver interpretation
(Egs. 1-4) most adaptation took place during the first time interval, Afy,
whereas liberal-drivers adapt most during A¢; and have a higher total fit-
ness flux. It is also apparent that while standard-drivers continue to sustain
a fitness flux during the last interval At,, the flux generated by liberal-
drivers has all but vanished. b) Inferred motion of the drivers (red) and
liberal-drivers (green) during the last time interval supports the obser-
vation that under the liberal-driver interpretation the system has almost
reached equilibrium (in the sense discussed in the text).

observe selection coefficients as large as to be = 2.4%/h,
raising the possibility that novel mutations might have ben-
eficial effects strong enough to have a measurable effect.
We thus took further steps to rule out this possibility.

As there is no recombination during the selection pro-
tocol any de novo mutation would lead to a global pertur-
bation of the allele frequency dynamics, one of the two al-
leles at each segregating site being fully linked to the new
mutation. This would lead to a large effect, increasing as
a function of time, on the movement of the allele frequen-
cies. We thus calculated genome-wide statistics of absolute
changes in allele frequency at the three time intervals (i.e.
lg(tx) — q(tx—1)]) from the trajectories inferred under the
unlinked driver model. The statistics showed that the ab-
solute movement of allele frequencies slightly decreased
throughout the course of the experiment, with mean values
0f 0.032, 0.032, 0.030 respectively, reflecting our inference
that 94% of allele frequencies evolved in a manner compat-
ible with neutral (no motion) evolution with the remaining
6% evolving as discussed. This decrease suggests that de
novo mutations did not significantly affect the allele fre-
quency dynamics during the time interval reported.

Spatial uncertainty of identified drivers

Likelihood calculations suggested that, using the (lib-
eral) driver passenger models, the precise location of a
driver could be identified on average to within an accuracy
of 12kb. Due to linkage, alleles at nearby loci are likely
to move in a similar manner, leading to uncertainty in the
precise choice of location of a driver locus. This uncer-
tainty was quantified by taking the maximum likelihood
drivers inferred under the standard and liberal-driver mod-
els and checking the next twenty segregating sites both up
and downstream, assigning each in turn to be the driver, re-
optimising the remaining degrees of freedom, and calculat-
ing the resulting likelihoods. Figure 6a shows for standard-
drivers that, using a log likelihood cutoff of three units
(95% confidence interval), the driver allele can on aver-
age be located within a window of 12kb centred on the
maximum likelihood location. This means that on aver-
age 38 segregating sites remain to be further studied for

each driver focus (see Supporting Text Pre-processing data
- identifying regions of interest for details how this number
of segregating sites was calculated). However, region spe-
cific uncertainty strongly depends on the selective strength
of the driver, local recombination rate and on the allele
read numbers from sequencing - variability of these fac-
tors leads to substantial variance in the accuracy of the
inferred driver location (Figure 6a). Nevertheless, for re-
gions with strong drivers, the small number of segregating
sites to be further studied reflects the efficiency of recom-
bination breaking linkage when advanced inter-cross lines
are used in the experimental design (Darvasi and Soller,
1995). Comparison of driver locations under each of the
two models, shown in Figure 6b, revealed differences that
were mostly within the uncertainty range, with mean abso-
lute distance ~ 2kb.

a)

counts

0O 5 10 15 20 25 30
Akb Akb

FI1G. 6.—Driver location uncertainty. a) Inferred sizes of the re-
gions containing loci which when fixed to be the driver are within a dis-
tance of 3 units of score (95% confidence interval) from the maximum
likelihood value (with re-optimization of the remaining degrees of free-
dom). Data shown is for standard-drivers. Variability in the magnitude
of selection and local recombination rates leads to substantial variation in
the uncertainty of the driver locations. b) Distances between the maximum
likelihood driver locations inferred under the standard-driver and liberal-
driver models. For most foci the two models gave predictions agreeing
within variability identified in panel a).

Analysis of a biological replicate experiment and
estimates of false positive rates

One great advantage of artificial selection protocols
is the opportunity to analyse biological replicates to gauge
robustness of inferences made. We analysed data from a bi-
ological replicate experiment and show that inferred statis-
tics of selection replicate well (see Supporting Text for de-
tails). However, as the replicate data set had fewer time-
points, and was thus not fully comparable to the one dis-
cussed so far, we performed computer simulations to esti-
mate false positive rates for the analysed 44 driver set. This
resulted in an estimated false positive rate for our driver re-
gion detection to be less than ~ 2% for populations of size
107. In these simulations we chose the number of segre-
gating sites, number of drivers and their estimated selec-
tion strengths and recombination rates to mimic the ones
found from the experimental data (see Supporting Text for
details).

The 44 regions called in our analysis as containing
driver loci is significantly larger than the more conserva-
tive 21 (all these regions are in our list) obtained by Parts
etal. (2011), who, for example, only call QTLs observed in
both the primary and the replica datasets. The existence of
a higher number of regions under selection than previously
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reported is supported by the false positive rate identified
from simulated data.

Discussion
Quantifying selection from time-resolved allele
frequencies

We performed the first, single nucleotide resolution,
genome wide population genetic analysis of time-series al-
lele frequency data from an evolving outbred population
under selection. The analysis revealed several insights into
the dynamics of the population at the molecular level. First,
we estimated that close to 6% of the over thirty thousand
segregating sites are affected by the selection pressure as
identified via deviation from a neutral null model. Second,
we demonstrated the main force causing this motion to be
genetic linkage which causes passenger alleles to hitch-
hike with driver alleles. Third, using a driver and passenger
model we quantified the selective advantage of the found
drivers, the amount of linkage disequilibrium within the re-
gions that they reside and the uncertainty in their locations.
The method we describe offers a first-order approach to ex-
amining selection in such an experiment.

Extending the above, by allowing driver alleles to
evolve arbitrarily, we found substantial statistical evidence
of fitness effects going beyond those compatible with stan-
dard additive models of selection, such that many of the
driver alleles evolve under an effectively time-dependent
fitness seascape (Mustonen and Lissig, 2009). We next
discuss possible scenarios underlying the observed liberal-
driver dynamics.

Linkage pattern in the initial pool

One explanation for the inferred liberal-drivers (or in-
deed the standard drivers) signal would be the existence
of linkage disequilibrium between candidate drivers. Such
linkage could result from stochastic effects during the
crossing, arising due to the finite population size, a sce-
nario which Eq. 4 would not capture. Numerical simula-
tions (reported in Supporting Text) showed that population
sizes from ~ 10° upwards are sufficient to rule out dis-
tortion to the global selection statistics arising from such
noise, on the assumption that the numbers of segregating
sites and drivers, driver selection strengths and recombina-
tion rates are close to those inferred from the real data. Fur-
thermore, analysis of data from a biological replicate gave
overall statistics of selection consistent with those inferred,
supporting the conclusion that drift-generated linkage dis-
equilibrium is not causing the signal (see Supporting Text
for more details).

From our simulations, we do note, however, that a
large number of false positives would be generated due to
drift-generated linkage in population of size 10°. There-
fore, in smaller populations our method should be applied
only for identifying the largest fitness effects to avoid be-
ing swamped by false positives (which would reflect mis-
taken measurements of selection rather than any under-
lying fitness land- or seascape), or in combination with
full sequence data from the initial pool to fix the linkage.
The population size required to correctly decide whether a
marker moved due to linkage to a nearby selective sweep

or just due to drift has been calculated (Logeswaran and
Barton, 2011).

Another possible reason for a non-trivial linkage pat-
tern in the initial pool could come from unknown selec-
tion pressures during the crossing protocol. Given that
such selection could in principle be arbitrarily complex,
our analyses of the data here remain to some extend vul-
nerable to this. However, there is no statistical evidence
for inter-chromosomal pairwise linkages between geno-
type data of 19 QTL loci (all part of our candidate driver
foci list) from 960 individuals at time-point (f, +#3)/2
as reported in (Parts et al., 2011). Therefore, worst case
scenarios where all but one of the candidate drivers were
linked to, and thus would merely hitchhike with, one of
the two nearly fixing drivers are not supported by the data.
Similarly to non-local linkage disequilibrium generated by
small populations, possible effects of selection during the
crossing to allele dynamics under the artificial selection
phase could be easily included to the present method given
suitable data. Extending the method to cover simultaneous
recombination and selection is possible, but remains a topic
for further investigation.

Clonal interference

In asexually evolving populations recombination can-
not combine beneficial mutations that are on different hap-
lotypes. This leads to so-called clonal interference where
some beneficial mutations will be removed from the popu-
lation due to them being interfered with stronger ones in
different backgrounds (Fisher, 1930; Muller, 1932). The
dynamics of clonal interference are complex and both its
experimental and its theoretical study has long been an ac-
tive research topic (for recent reviews see (Park et al., 2010;
Sniegowski and Gerrish, 2010)).

For the results presented here, the large number of
drivers make it unlikely to have a large number (or indeed
any) individuals with all the beneficial alleles in a popula-
tion of size ~ 107 — 108, so that such interference seems
inevitable. However, simulation and sequencing data both
suggest that clonal interference does not account for the
liberal-driver signal observed here.

Analysing simulated data with the number of drivers
(additive in fitness) and their strengths comparable to those
inferred from the real experiment we concluded that the ob-
served liberal-driver dynamics does not reflect effects pri-
marily caused by clonal interference. We reached this con-
clusion by analysing the simulated data under both stan-
dard and liberal-driver models (see Supporting Text). With
both models we were able to discover the “true” driver
set and reproduce the correct selection strengths for the
drivers. However, using a liberal-driver model to infer se-
lection from the simulated data, we did not see the decrease
in fitness flux observed for the real system (contrast Fig-
ure 5 and Supporting Figure S14). For this reason we be-
lieve that clonal interference is not the primary explanation
for the stronger performance of the liberal-driver model for
most candidate driver regions in the real data. Supporting
this conclusion, genotyping data of 24 loci from 960 in-
dividuals from time-point (¢, 4 #3)/2 showed that no sin-
gle genotype (clone) dominated the population at that time
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(maximum count observed was 6), a considerable diversity
of 787 unique haplotypes being detected and the data be-
ing consistent with the expectation under a hypothesis of
independent sites (Parts et al., 2011).

Given the absence of recombination, it is inevitable
that clonal interference would, after sufficient time had
passed, have a significant influence on the evolution of
driver allele frequencies. However, given additive drivers
of the size and number that we find from the real system,
that point would not have been reached by the end of the
experiment.

Clonal interference between (possible) multiple ben-
eficial alleles within a driver focus remains a possibility
but would not stop the dominant combination of these mu-
tations from fixing and as such is not consistent with the
liberal-driver signal. Extension of the method to cover mul-
tiple drivers will be required to study such effects and is
beyond the scope of this manuscript.

Epistasis and other more complex selective scenarios

Given that linkage or clonal interference between
driver foci do not satisfactorily explanation the observed
dynamics, we believe the liberal-driver signal is likely to
be caused by fitness effects going beyond additive mod-
els of selection. For instance, one such complex selection
scenario could be that of epistatic interactions between
drivers (Weinreich et al., 2005), encompassing combina-
tions of pairs or potentially multiple drivers, while the
possibility of genuinely time-dependent or frequency de-
pendent selection cannot be definitively ruled out. Mod-
els could be developed to examine the likelihood of each
of these potential scenarios. However, inference of a cor-
rect model based on the data available presents a substan-
tial challenge, such that the precise nature of the observed
time-dependency remains to be shown.

Comparable events at macro-evolutionary time-scales

The adaptive dynamics studied here consisted of
driver alleles at loci under strong selection for heat resis-
tance and neutral passengers alleles linked to the drivers.
As can be seen in the frequency profiles in Figures 2, 4,
and S5, genomic regions around the drivers have substan-
tially reduced allelic variance. The experiment and the ob-
served dynamics took place over time-scale of days. Nev-
ertheless, a similar pattern of the hitchhiking effect has
been described theoretically (Kim and Stephan, 2002) and
found, among others, in the case of Drosophila, where in-
dividual selective sweeps in the recent past leave remnant
genomic valleys of reduced variability (Svetec et al., 2009;
Macpherson et al., 2007). However, while in the case of se-
lective sweeps variability is removed completely from the
genomic locality, in many of the cases studied here a sub-
stantial degree of variance remains in the immediate vicin-
ity of the sweep locus after the adaptive event: the genomic
signature resembles that of a soft sweep (Hermisson and
Pennings, 2005), where the beneficial driver allele is ini-
tially linked to many different background genotypes.

From driver locations to biology

In the data considered here, the average spatial reso-
lution which can be attained in identifying driver locations
is about 12kb (see Figure 6). As such, identification of in-
dividual variants responsible for the inferred fitness advan-
tages would require further experimental or bioinformatic
analysis, such downstream analysis being very important
in terms of the biological insight that can be collected from
this data. Analysis of some of the large events observed in
the data has been carried out in earlier work (Parts et al.,
2011), showing them to be biologically interesting with re-
spect to heat tolerance. While mapping the precise loca-
tions of the drivers are important for the biology of the trait
in question, we note that inference of selection as was done
here is not sensitive in this respect and thus the resulting
estimates for selection are robust.

Conclusions

Our analysis here has been of time-resolved allele
frequency data from a yeast population under heat stress.
However, the method presented has potential application
to a range of organisms under a variety of selection pres-
sures. Several conditions were necessary for our analysis
to be sensible: efficient recombination during the crossing
to break up linkage and create variation, a large popula-
tion size and high initial allele frequencies to reduce the ef-
fect of genetic drift and clonal interference, the duration of
the experiment, which does not allow de novo mutations to
start interfering, and finally, the application of strong selec-
tion. The method can be extended to sexually propagated
populations by considering selection and recombination si-
multaneously, and in such a setting the key conditions enu-
merated above will become somewhat more lenient.

The focus on quantifying selection and utilizing mul-
tiple consecutive time points distinguishes our method
from a standard QTL mapping design although such a map-
ping would be a natural biological application. We see the
combination of the experiment with multiple time points
and the approach presented here as a model for the quanti-
tative study of the fitness effects of mutations and their pos-
sible interactions. Time resolution is key to our analyses; if
data had been collected only from the initial and final pool,
we would not have been able to show that majority of the
drivers are not compatible with a standard model of addi-
tive selection. Under the framework of experiment and data
analysis described here, alterations to study other variables
would be possible; for example, the effect of drift could be
examined through modulating the population size.

With the imminent arrival of deep population sam-
ples of time-resolved full genome sequences from evolu-
tion experiments, the possibility emerges of scaling up our
measurements of the fitness effects of mutations to include
complex multi-locus interactions. Application of popula-
tion genetic theory will be central to making the best pos-
sible use of such data.
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Methods
Trajectory probabilities

Given observations of allele counts at a locus i we can write
the corresponding trajectory probability under some evolution
model ./ :

T
P (| ) =[] Pui(0)INF (1), ) (©6)

t=to

where P is binomial probability distribution, leg (¢) denotes num-
ber of draws i.e. sequence read depth at locus i at time ¢ and the
true underlying population frequency of the allele ¢¢(r) depends
on the model .# which fixes the time evolution of the system.
The evolution of ¢{(¢) can be influenced by alleles at other loci
depending on the specifics of .#. We can then write the proba-
bility for the total observation given .# which we, to serve as an
example, take here to be the driver and passengers model defined
in Egs. 1-4:

log Z(n|.4) =
Nial

where #; = {48, 4P}, A8 = {o1,p,q¢%(t0)} and
M ]P o= {q’]?(to)}. Thus, we can form a log-likelihood score of
the model .#; given the observation:

ZL(Min) = log P(M i)+ Y log P (MT 4 ).
J#
(8)

This is the function underlying our maximum likelihood infer-
ence. The structure of the log-likelihood is such that the driver i
(index i also to be learned) influences every passenger trajectory
J, but given the driver dynamics we can independently maximize
likelihoods of the passenger trajectories which only have their ini-
tial conditions (if so desired also linkage to driver D;;) as free
parameters.
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